Sigma-model for Generalized Composite p-branes

نویسندگان

  • V. D. Ivashchuk
  • V. N. Melnikov
چکیده

A multidimensional gravitational model containing several dilatonic scalar fields and antisymmetric forms is considered. The manifold is chosen in the form M = M0 ×M1 × . . . ×Mn, where Mi are Einstein spaces (i ≥ 1). The block-diagonal metric is chosen and all fields and scale factors of the metric are functions on M0. For the forms composite (electro-magnetic) p-brane ansatz is adopted. The model is reduced to gravitating self-interacting sigma-model with certain constraints. In pure electric and magnetic cases the number of these constraints is n1(n1 − 1)/2 where n1 is number of 1-dimensional manifolds among Mi. In the ”electro-magnetic” case for dimM0 = 1, 3 additional n1 constraints appear. A family of ”MajumdarPapapetrou type” solutions governed by a set of harmonic functions is obtained, when all factor-spaces Mν are Ricci-flat. These solutions are generalized to the case of non-Ricci-flat M0 when also some additional ”internal” Einstein spaces of non-zero curvature are added to M . As an example exact solutions for D = 11 supergravity and related 12-dimensional theory are presented. PACS number(s): 04.50.+h, 98.80.Hw, 04.60.Kz

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A ug 1 99 8 Sigma - model for Generalized Composite p - branes

A multidimensional gravitational model containing several dilatonic scalar fields and antisymmetric forms is considered. The manifold is chosen in the form M = M 0 × M 1 ×. .. × M n , where M i are Einstein spaces (i ≥ 1). The block-diagonal metric is chosen and all fields and scale factors of the metric are functions on M 0. For the forms composite (electromagnetic) p-brane ansatz is adopted. ...

متن کامل

ar X iv : h ep - t h / 97 05 03 6 v 1 6 M ay 1 99 7 Sigma - model for the Generalized Composite p - branes

Multidimensional gravitational model containing several dilatonic scalar fields and antisymmetric forms is considered. The manifold is chosen in the form M = M 0 × M 1 ×. .. × M n , where M i are Einstein spaces (i ≥ 1). When metric is block-diagonal, all fields and scale factors of the metric depend (essentially) on the point of M 0 and for the forms composite (electromagnetic) p-brane Ansatz ...

متن کامل

Topological Strings on Noncommutative Manifolds

We identify a deformation of the N = 2 supersym-metric sigma model on a Calabi-Yau manifold X which has the same effect on B-branes as a noncommutative deformation of X. We show that for hyperkähler X such deformations allow one to interpolate continuously between the A-model and the B-model. For generic values of the noncommutativity and the B-field, properties of the topologically twisted sig...

متن کامل

P-Branes, Poisson-Sigma-Models and Embedding Approach to (p + 1)-Dimensional Gravity

A generalization of the embedding approach for d-dimensional gravity based upon p-brane theories is considered. We show that the D-dimensional p-brane coupled to an antisymmetric tensor field of rank (p + 1) provides the dynamical basis for the description of d = (p + 1) dimensional gravity in the isometric embedding formalism. ”Physical” matter appears in such an approach as a manifestation of...

متن کامل

D-branes on Stringy Calabi–Yau Manifolds

We argue that D-branes corresponding to rational B boundary states in a Gepner model can be understood as fractional branes in the Landau–Ginzburg orbifold phase of the linear sigma model description. Combining this idea with the generalized McKay correspondence allows us to identify these states with coherent sheaves, and to calculate their K-theory classes in the large volume limit, without n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998